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Ferromagnetic phase transition: the Ising model

Depending on the external parameters imposed on a physical system, its properties can vary drastically.

One only needs to think of water at usual temperatures and pressures to see how, within a temperature

range of about 100 K, it can change from solid to liquid, and finally onto gas. These three different

states are examples of what is more generally called a phase of matter. The different phases of matter

are characterized by differing physical properties, that undergo an abrupt change at a phase transition.

The phase transitions are characterized by the external temperatures and pressures at which they can

occur. One notes that phase transitions are emergent phenomena, meaning that they are specific to

thermodynamic systems, which exhibit a very large number of microscopic degrees of freedom. When

reducing the number of constituents of a system, the transition smoothens out. In such cases, one rather

talks about regimes of matter and their crossovers.

The concept of a phase transition is not limited to the solid, liquid and gas states. Depending on the

physical properties taken into account, one can distinguish further states of matter. More generally, we

can associate to a phase transition with any process that involves a sudden change in the ”order” of

a system. Such order can be characterized by a well-chosen parameter of the system which allows to

distinction between the ordered and the unordered phases.

For example, the magnetic state of a material is also subject to a phase transition. A material is in a

ferromagnetic state when it exhibits a large, nonzero magnetization even in the absence of any external

magnetic field. For example, iron at room temperature is in a ferromagnetic state. On the contrary, a

material is in a paramagnetic state when it exhibits a zero net magnetization in the absence of a magnetic

field, and applying an external magnetic field gives rise to a (small) colinear nonzero magnetization. This

justifies that, in this case, the magnetization of the system is a possible order parameter describing the

phase transition.

Before going forward, one must note that most solids at room temperature are paramagnetic, with few

exceptions. One also distinguishes a third class of materials, called diamagnetic, that also have zero

net magnetization in the absence of an external field, and which respond with a magnetization that

opposes an external applied field. In this problem, we only consider transitions between ferromagnetic

and paramagnetic states.

At a given temperature, most substances will either be in a ferromagnetic or in a paramagnetic state.

At very low temperatures, a substance will always be ferromagnetic, and above a certain temperature

Tc , called the Curie temperature, it will suddenly lose its magnetization and transition to a paramagnetic

state. In this problem, we will investigate the Ising model of ferromagnetism. The system described by

this model is simple enough to give an intuition of the physical situation, yet powerful enough to yield

many qualitative features of real ferromagnets. Furthermore, it allows to explore the influence of the

number of constituents on the phase transition.

In the Ising model, we consider a two-dimensional L× L lattice of spins, which can each either point up
or down. The state of the spin at position (i , j) in the lattice is encoded by the number σi j , as follows

σi j =

{
+1 if the spin (i , j) points up

−1 if the spin (i , j) points down
(1)

The main assumption of this model is that neighboring spins in the lattice interact by a mechanism called

exchange interaction. The parameter describing the exchange interaction for a ferromagnet is denoted

by J > 0. If two neighboring spins point the same way (either both up or both down), the state is

energetically favorable and contributes −J to the energy of the system. When two neighboring spins
point opposite ways, the state is energetically unfavorable and contributes an energy +J to the system.

Furthermore, one assumes for simplicity periodic boundary conditions: the spins on row L are assumed



to neighbor those on row 1 (as well as those on column L neighbor those on column 1). Then, the total

energy of a given system of spins is given by

E = −
J

2

∑
u

∑
v neighbor of u

σuσv (2)

In such a system, the distinction between the ferromagnetic and the paramagnetic state can be done by

choosing the magnetization per unit spin M as an order parameter. Its definition is

M =
1

L2

∑
(i ,j)

σi j (3)

The absolute value of M will be very close to one in a ferromagnetic phase, whereas it will be almost

zero in a paramagnetic phase.

The thermal description of the Ising model relies on Boltzmann statistics. In this description, two states

α and β of a given system at temperature T , having energies Eα and Eβ, will arise with probabilities pα
and pβ whose ratio is

pα
pβ
= exp

(
−
Eα − Eβ
kBT

)
(4)

In order to compute the expectation values of thermodynamic parameters in the Ising model, one needs

to consider all the possible spin configurations, compute their associated probabilities, and then average

over all the different states with their corresponding probabilities. Given that there are 2L
2
possible

configurations of an L× L spin-lattice, for N as low as 10, this already becomes a formidable task.
One can mitigate this limitation by noting that most of these states will yield a negligible contribution to

the expected values. In fact, only a few of these most likely states will make a significant contribution.

Selecting the relevant states, however, is also a non-trivial task. The solution that we take in this case is

a Monte Carlo simulation. This approach relies on random sampling of states according to wisely chosen

probability distributions, following Boltzmann statistics. Starting from a randomly chosen initial state,

one evolves it through random spin flips, occurring with probabilities chosen by Boltzmann statistics.

After a certain number of steps Neq, the system can be considered as equilibrated, meaning that it will

only be evolving among the most likely states mentioned before. Then, the system continues to evolve

according to the same random procedure for a further number of steps NMC . The expectation of a

thermodynamic parameter is then obtained by computing its value for each of the states obtained during

the Monte Carlo procedure and averaging over all the obtained values.

We provide an implementation of the said Monte Carlo algorithm. The adjustable parameters are the

lattice size L, the exchange constant J, the temperature T of the system, as well as the number of

steps in the Monte Carlo procedure NMC . The number of equilibration steps is always chosen as Neq =

NMC/10. The algorithm returns the expectation of the average magnetization per spin with its error

bar, as obtained from the algorithm. The algorithm may also generate, for visualization purposes, a

graphical representation for a thermal equilibrium configuration of spins. The purpose of this problem is

to investigate the behavior of the average magnetization M as the three adjustable parameters vary.

One notes that the results generated by the algorithm correspond to the thermodynamic limit only

asymptotically, ie. upon considering a very large system of spins undergoing a very high number of Monte

Carlo steps. In practice, the algorithm is still quite time-consuming, and a single run can last up to

several minutes. As such, for time efficiency reasons, you must limit the number of spins as well as the

number of iterations. In doing so, you must be careful with the following trade-off: reducing these values

too much might lead you to obtain non-relevant thermodynamics, and you might not be able to observe

the required phase transitions! The strategy we suggest is the following: first, read through the entire

problem to get a feeling of the questions you need to study. Then, take a while to play with the algorithm

and get a feel of its typical runtime. Start with small lattices and small numbers of Monte Carlo steps,

and increase the values steadily up until you get clear phase transitions in a reasonable runtime. Always

mention the lattice size and the number of steps you use on your answer sheet.

Page 2



You will need to produce several graphs and plots: you can either create them on your computer, using

an available software of your choice (such as Excel), or using millimeter paper provided to you. If you

create a digital graph, make sure to save it and hand it in, and explicitly mention the file name on your

answer sheet. Also, hand in all of the data files on which your solution is based, and always mention the

file name where the corresponding data is located. Your answers will not be graded if the graphs and

data files are not handed in or not appropriately referenced in your solution.

A Phase transition and the critical temperature

In this section, work with a lattice size L = 20. Select an appropriate number of iterations so as to reach

thermodynamic equilibrium.

A.1. (1 point) Set J = 1 and toggle the animation on. Observe the system at the temperatures T = 1,

T = 2, T = 3 and T = 4. Qualitatively describe the results. Do you observe a phase transition? In

what temperature range?

A.2. (2 points) Set J = 1 and plot the resulting (absolute value of) magnetization versus temperature.

Present your data in a table. Obtain an estimate for the phase transition temperature.

A.3. (4 points) Repeat the experiment for several values of J. Plot the dependence of the critical

temperature on the exchange parameter J and suggest a reasonable fit.

A.4. (1 point) In the ferromagnetic regime, is there a preferred direction of magnetization? Perform a

sufficient number of experiments to draw a conclusion.

B The crossover regime

B.1. (3 points) Repeat the experiment for a small L = 10 and L = 5. How does the phase transition

change?

C Lattice in an external magnetic field

Here, we introduce an additional term in the energy, accounting for an external magnetic field H, having

the form

EH = −H
∑
(i ,j)

σi j (5)

Work again with a lattice size L = 20. Fix the value of J = 1.

C.1. (2 points) Repeat the experiment for H = 0.1 and H = 1. Plot the magnetization versus temper-

ature curves and compare them with the curve obtained in the absence of a magnetic field. Does

the external field influence the temperature of the phase transition?

C.2. (1 point) Focus on the ferromagnetic regime. Is there a preferred direction of magnetization in this

case? Study both cases H = 0.1 and H = 1.

C.3. (2 points) Focus on the paramagnetic regime. Plot the dependence of the magnetization on the

external field 0 < H < 2 for five different temperatures. Compare these dependences and discuss.
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For small enough external fields, one can assume that the magnetization responds linearly to the applied

field. In that case, one can define the susceptibility of the system as

χ =
M

H
(6)

For paramagnetic substances, the susceptibility strongly depends on the temperature, according to the

Curie-Weiss law

χ(T ) =
χ0
T − Tc

(7)

where χ0 is a fitting constant and Tc is the Curie temperature at which the phase transition occurs.

C.4. (2 points) Compute the susceptibilities from the previous question and investigate their temperature

dependence. Compare with the Curie-Weiss law and comment.

D Antiferromagnetism

Setting a negative value for the exchange parameter J < 0 results in qualitatively different behavior,

usually called antiferromagnetism.

D.1. (1 point) Set J = −1 and describe the resulting states for different temperatures. What are the
phases of this system?

D.2. (1 point) Explain why magnetization is no longer the relevant parameter to describe the phase

transition. Propose an alternative order parameter.
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