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PROBLEM 1: CIRCLES ALL THE WAY 
 

 

This problem has two parts. 

 

 

A. Determining the radius of curvature of a planar curve by means of Mechanics 

 

Each infinitesimal length element of a curve can be thought as 

belonging to a circle with a certain radius (see Figure 1). This 

radius is called the radius of curvature. In order to determine the 

radius of curvature at some point of a planar curve, one can con-

sider that the curve is the trajectory of a point-like object, and that 

the given point is the very object. 

 

Let y = f(x) be the equation of the curve, where x and y are the coordinates of the 

object. 

 

a.  Express the components vx and vy of the velocity of the object in terms of x and its 

time derivatives, and f(x) and its derivatives. 

b.  Let at be the component of the acceleration vector parallel to the velocity. Express 

vector 
t

a  in terms of vx, vy, the components ax and ay of the acceleration, and the unit 

vectors i  and j  of the Ox and Oy axes. 

c.  Express the magnitude (i.e. the absolute value) of the component 
n

a  of the 

acceleration perpendicular to the velocity, in terms of vx, vy, ax and ay. 

d.  Express the radius of curvature in terms of f(x) and its derivatives. 

e.  Find the radius of curvature of the parabola y = Ax
2
 (A > 0) at a point having 

coordinate x = x0. 

f.  Find the period of small oscillations performed by a bead on the bottom of a 

smooth surface of equation y = sin 2x [m]. You may use g ≈ π
2
 [m/s

2
], where g is the 

gravitational acceleration. 

 

 

 

B.  Springs on a circle 

 

 

In this problem we will investigate the motion of a 

point-like object of mass m connected to N + 1 

springs of stiffness k. The springs are attached to a 

circle of radius R (see Figure 2) and have negligible 

natural length. The points to which the springs are 

attached are arranged uniformly on the circle such 

that, when the object is at the center of the circle, the 

angle between two adjacent springs is equal to 

2π/(N+1). We label the springs 0 through N. 

R 

Figure 1 

Figure 2 
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Let angle α and the radial coordinate r of the 

object be defined as in Figure 3. The object can 

move in the plane of the circle and we ignore the 

effects of gravity throughout the problem. 

 

g.  Compute the length ln of the n-th spring for 

arbitrary r and α. 

h.  Write down the kinetic energy Ekin and the 

potential energy Epot  of the object in terms of r, α, 

and their time derivatives. (Do not evaluate the 

sum in the potential energy just yet.) 

i.  Compute the sums 

0

2
cos

1

N

n

n

N





 
 

 
    and   

0

2
sin

1

N

n

n

N





 
 

 
   

and use the results to evaluate Epot for arbitrary N. 

j.  Show that the angular momentum L is conserved. 

k.  Write down the implicit equation for r in terms of L ≡ L/m and ω
2
 ≡ (N+1)k/m. 

l.  Perform the substitution 
2( ) ( )r t z t K  , 

with K an unspecified parameter, and obtain the equation “of motion” for z(t). 

 

Perhaps surprisingly, this equation admits oscillatory solutions z(t) = A cos (ωt + ϕ0). 

m.  Show this, and determine A in terms of L, K, and ω. 

 

K and ϕ0 can be thought of as integration constants to be specified by the initial 

conditions. Since the equation of motion is second order, and we have two integration 

constants, it means that this is the most general function describing the distance r(t). 

On the other hand, one can notice that the equation for r(t) remains unchanged on 

substituting r with –r. Physically this is the same as substituting α with α + π, which 

means that the distance from the center of the circle to the object is the same in any 

two opposing directions. 

n.  Write down r(t) in terms of L, ω, K and ϕ0. Is r(t) periodic? Is the motion periodic? 

Do they both have the same period? 

o.  Describe the motion of the object when L = 0. 

p.  Find out the possible value of r at which the object could perform circular uniform 

motion. 

 

Suppose now we remove the springs labeled 0, d, 2d, … , where d divides N + 1.  

q.  Argue that r(t) derived in part n. continues to hold, but for a different value of ω. 

What is this new value ω’ in terms of ω, N, and d?

 

Figure 3 
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Theoretical Problem no. 2 (10 points) 

Terrestrial climate modeling 

Climate change and global warming, the life of humans in new climatic conditions becomes 
topics of public interest in recent decades. 

On a cosmic scale, the only phenomena occurring in Earth's energy balance are absorption and 
emission of radiation. One can say that the earth's climate condition depends on delicate 
balance between the energy that our planet receives for the formidable energy source that is 
the sun and the energy that Earth radiates into space. Consider that solar constant for the 

radiation coming from the Sun towards the Earth is 21370  mWwS . 

A body that absorbs electromagnetic radiation reaching the surface, regardless of the 
wavelength of the radiation and emits electromagnetic radiation according to the temperature of 
its surface is called a blackbody. A black body emits energy with a specific spectral distribution, 
depending on its own temperature. Solid 
smooth lines, in the graph in Figure 1 
show the spectral distribution of the 
emission energy of the Sun, equivalent to 
a black body.  

If  T  represents the total energy (in the 

whole spectrum) emitted by unit area of a 
black body in unit time, and T is the 
absolute temperature of the black body, 
then the Stefan - Boltzmann states that 

  4TT   . In the expression 

42810675   KmW,  is Stefan – 

Boltzmann constant.     Figure 1 (not for calculations purposes) 

Problem proposes you to use different modeling in different workloads and to determine the 
average temperature the Earth would have at the surface for each of the models used. Express 
the answers as function of symbols  of quantities or numerical values marked in blue color in the 
problem statement. Express obtained numerical results in the form of integers. 

Task no. 1 
In the task no. 1 uses simple modeling. Suppose that the energy is taken from the Sun and that 
the Earth loses energy as a black body. 

1.a. Determine the expression of average temperature PT  that the Earth's surface 

should have , in accordance with simple modeling used. (0,70p) 
 

1.b. Calculate the numerical value PT  of the average temperature that the Earth's 

surface should  have, according to this model. (0,30p) 

Task no. 2 

Simple modeling of the task no. 1 one assumes that the Earth is a black body. Assumption is 
unrealistic, because all images taken from space show the Earth as a luminous body. 

Earth's atmosphere (especially clouds) reflects approximately %24  of the energy coming from 

the Sun and the Earth's surface (especially ice areas) still reflects %6  of the incident energy. 

Feature called albedo measures the ratio of reflected radiant flux and incident radiant flux. 

Considers that terrestrial albedo is %A 30 . 
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2.a. Determine the expression of average temperature 'TP  that the Earth's surface 

should have, in accordance with simple modeling used in these workload. (0,70p) 
 

2.b. Calculate the numerical value 'TP  of the average temperature that the Earth's 

surface should  have, according to the model in workload 2a. (0,30p) 

Task no. 3 
While the Sun emits energy mostly in the visible, relatively low temperature of the Earth's land 
surface causes its emission to be localized in the infrared spectrum. A careful modeling of 
climate takes account of the atmosphere. The atmospheric gas is a mixture having specific 
absorbent properties. The Spectrum illustrated in Figure 1 shows that the different atmospheric 
gases absorb radiation in different spectral domains. Characterization of the spectral absorption 

can be achieved by introduction of transmission coefficients in the visible vis  and infrared ir , 

respectively, representing the ratio of the energy passing through the air (in the visible or 
infrared), and the energy that enters the atmosphere. If radiation in a specified spectral range is 
completely absorbed, then the corresponding transmission coefficient is zero, and if radiation is 
not absorbed at all, then the transmission coefficient is one. 

Task no. 3  proposes to determine the Earth's temperature "TP  using a modeling that takes into 

account the partial reflection of light coming from the sun (albedo A ) and absorptive properties 

of the atmosphere (transmission coefficients vis  and ir ). 
 

3.a. Determine the expression of average temperature "TP  that the Earth's surface 

should have, in accordance with modeling used in these workload. (2,50p) 
 

3.b. Calculate the numerical value "TP  of the average temperature that the Earth's 

surface should  have when 30,A  , 80,vis   and 10,ir  . (0,30p) 
 

3.c. Using modeling proposed in this workload, calculate the average temperature on 
the Earth surface, where albedo and transmission coefficients have the values 
given in Table 1 (1,20p) 

 

Table 1 

Case I II III IV 

vis  1 1 1 1 

ir  1 1 0 0 

A  0,3 0,0 0,0 0,3 

 K"T P      

 C"t P       
 

Task no. 4 

Use modeling proposed in the task no. 3 and assume that the distance between Earth and the 

Sun would rise by %f 1 . 
 

4.a. Determine the expression of average temperature 
'''

PT  that the Earth's surface 

should have, if 30,A  , 30,ir   and 60,vis  .  (1,00p) 
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Task no. 5 
Assume that some of the sand found in the Sahara desert would be "transformed" into a "mirror 
glass". 

5.a. Using the modeling proposed in task no. 3 estimates the surface that "mirror 
glass" should have so that the average temperature at the Earth's surface to fall 

C1  against the value determined in the task 3.b. Consider that the radius of the 

Earth is kmRP 6400 . (3,00p) 
 

 
 
 
 
 
 

© Topic proposed by: 
Prof. Dr. Delia DAVIDESCU  
Conf. Univ. Dr. Adrian DAFINEI  
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Answer Sheet 

Theoretical Problem no. 2 (10 points) 

Terrestrial climate modeling 

Task no. 1 

1.a. Expression of average temperature PT  

that the Earth's surface should have , in 
accordance with simple modeling used 

 0,70p 

 

1.b. Numerical value PT  of the average 

temperature 
 0,30p 

Task no. 2 

2.a. Expression of average temperature 

'TP  of the Earth's surface 
 0,70p 

 

2.b. Numerical value 'TP  of the average 

temperature 
 0,30p 

Task no 3 

3.a. Expression of average temperature 

"TP  of the Earth's surface  2,50p 

 

3.b. Numerical value "TP  of the average 

temperature 
 0,30p 
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3.c. The average temperature on the Earth surface, where albedo and transmission 
coefficients have the values given in Table 1 

 
Table 1 

Case I II III IV 

vis  1 1 1 1 

ir  1 1 0 0 

A  0,3 0,0 0,0 0,3 

 K"T P  
    

 C"t P   
    

 

1,20p 

Task no. 4 
4.a. Value of average temperature 

'''

PT  that the Earth's surface should 

have if 30,A  , 30,ir   and 

60,vis  . 

 1,00p 

Task no. 5 

5.a. The estimated value of surface of 
mirror glass 

 3,00p 

 

  



 

     Romanian Master of Physics 2014 
 

 

Page 8 of 10 

 

 

 

 

 

PROBLEM 3:  BLACK HOLES PHYSICS 
 

 

In this problem we will explore the physics of black holes – astrophysical objects so 

massive that no object, not even a photon, can escape from if it gets sufficiently close. 

Because black holes are extremely massive, in their vicinity Newton’s theory of gravity 

breaks down and one is forced to use Einstein’s general theory of relativity to obtain 

a correct description of their physics. 

 

 

Any black hole in the physical universe is uniquely specified by exactly three quantities: 

its mass M, angular momentum J, and charge Q. In addition to these, a black hole also 

has a space-time singularity and an event horizon, which is the surface surrounding the 

central singularity which can only be crossed “going in”. Any photon or object which 

falls through the event horizon will not be able to exit back out and will eventually hit 

the central singularity. 

It is convenient to describe the spacetime of non-rotating black holes by four coordinates: 

t, r, θ and ϕ, with 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π. These can be thought of as the usual spherical 

coordinates plus time. Because the geometry is no longer flat, the infinitesimal spacetime 

interval is given by 

    
 

   
2

2 2 2 22 2 2 2sin
dr

ds c f dt r d r d
g

         (1) 

with f and g functions of the four coordinates. For spherically symmetric uncharged 

black holes (known as Schwarzschild black holes), f and g are functions of the radial 

coordinate r only, and are given by 

 S( ) ( ) 1
r

f r g r
r

   ,  (2) 

where rS, the Schwarzschild radius, is the radial coordinate of the event horizon. 

a.  Write down the infinitesimal spacetime interval (ds)
2
 for Minkowski spacetime in 

spherical coordinates, using the signature given above (–, +, +, +). 

 

Suppose an observer is initially at rest (dr/dt = 0, dθ/dt = dϕ/dt = 0) at radial coordinate 

r0 > rS. Under the gravitational pull of the black hole he will start falling towards the 

event horizon, moving only along the radial direction (and thus keeping θ and ϕ constant 

at all times). Let t’ be the proper time measured by the observer’s clock. The correct 

general relativistic relation between elapsed proper time dt’, elapsed coordinate time dt 

and radial coordinate change dr is (you don’t have to show this) 

 

2 222

S S S

2 2 2
S

1
1 0

2 2
1

r c r rd r dt dr

rdt r r dt r dt

r

    
              

.  (3) 

b.  From equations (1) - (3) compute the proper acceleration a ≡ d
2
r/dt’

2
 in terms of c, 

the speed of light in empty space, r, and rS. 

Hint: The spacetime interval (ds)
2
 is the same in all reference frames. 
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c.  Even without resorting to any calculation, it should be expected that the Newtonian 

expression for a can be recovered in the large r (i.e. small M) limit of the relativistic 

 

 

expression. However, now that you have done the calculation, can you make a stronger 

statement? Determine rS in terms of M, the black hole’s mass, c, and G, the gravitational 

constant. 

d.  Compute the proper velocity v ≡ dr/dt’ as a function of r, in terms of M and r0 and G. 

e.  Using that 

  (1 ) arccos
1

x
dx x x x

x
    

 C , (4) 

compute the proper time t’ after which the observer reaches the event horizon. Write 

the result in terms of r0, M, G and c. 

 

The results of parts a. - c. may lead one to speculate that general relativity is not that 

different from Newtonian mechanics after all. This is a misleading interpretation, as 

the two theories differ significantly in many aspects. 

f.  To highlight one such aspect, calculate the coordinate time t it takes for the observer 

to reach the event horizon. Are you surprised? 

Hint: You do not need to determine the antiderivative in order to compute what the 

integral equals. 

 

We now turn towards the thermodynamical properties of black holes. If only classical 

physics is taken into account, black holes do not emit any form of radiation and can thus 

be considered to have zero temperature. However, in 1974 physicist Stephen Hawking 

proved that once quantum corrections are considered, black holes emit radiation 

according to the blackbody spectrum (you do not need to show this). The corresponding 

blackbody temperature is known as the Hawking temperature, TH, and can be thought 

of as the temperature of the black hole. For a Schwarzschild black hole of mass M, the 

Hawking temperature is equal to 

 
3

H

B8

c
T

Gk M
 ,  (5) 

where ħ is the Planck constant and kB is the Boltzmann constant. 

g.  Using equation (5) compute the entropy S of a Schwarzschild black hole. Express 

it in terms of c, G, ħ, kB, and the horizon area, A = 4πrS
2

. 

Hint: Think of Einstein’s famous formula. 

 

The result from part g. suggests that at the classical level (i.e. ignoring quantum corrections) 

the total area of black holes involved in any physical process can never decrease. This 

is indeed true and has been formalized into a theorem by Hawking in 1971. 

h.  Using the above theorem compute the maximum amount of energy that can be 

radiated as gravitational waves in the merger of two Schwarzschild black holes of 

masses M1 and M2, assuming the black holes were initially at rest when far away. 

 

We now return to the subject of Hawking temperature. While Hawking’s 1974 derivation 

of TH was somewhat technical, in parts i. - k. we will rederive his result using a much 

simpler argument. Take an infinitesimal spacetime interval of the form (1) with the 

functions depending only on the radial coordinate r, 
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   
 

   
2

2 2 2 22 2 2 2( ) sin
( )

dr
ds c F r dt r d r d

G r
       , (6) 

 

 

and suppose that F(r) and G(r) have a first order zero at rh, that is F(rh) = G(rh) = 0, 

but F’(rh) ≠ 0 and G’(rh) ≠ 0. Consider only the (t, r) part of (ds)
2
 and analytically 

continue the coordinate time t to “imaginary time” τ via t → iτ, so that the signature 

of the spacetime interval becomes Euclidean and the infinitesimal spacetime element 

ds becomes an infinitesimal element of ordinary length, 

  
 

 
2

2 22 ( )
( )

dr
ds c F r d

G r
    (7) 

The length element ds now describes how distances are measured on an ordinary 

2-dimensional plane, with the origin corresponding to r = rh and r ≥ rh for any point 

on the plane. This coordinate system is an analogue of polar coordinates, in that r can 

be thought of as a radial coordinate, and τ as an angular coordinate that must be periodic 

with some period P. 

i.  Write down the distance R from the origin to a point of coordinate r = rh + ε that is 

infinitesimally close to the origin. Express your answer in terms of ε and G’(rh). 

j.  Write down the circumference L of a circle of radial coordinate rh + ε around the 

origin, with ε infinitesimal. Express your answer in terms of P, ε and F’(rh). 

k.  By imposing the condition that the plane is not singular at the origin, that is that 

L = 2πR, determine the period P of the τ coordinate. From field-theoretic arguments 

this period must be equal to ħc/kBTH. Solve for the Hawking temperature and recover 

equation (5) for F(r) = G(r) = 1 – 2GM/(c
2
r). 

l.  Compute the black hole’s heat capacity C in terms of G, c, ħ, kB and TH. 

 

We now consider black hole evaporation. Assuming no infalling matter or energy, a 

black hole will slowly radiate away its mass via Hawking radiation photons. Although 

a correct treatment of the evaporation process at high energy scales requires a theory 

of quantum gravity, as long as TH is below the Planck scale the semi-classical approach 

we’ve been using so far suffices. In what follows we will obtain an estimate of the 

black hole evaporation timescale, ignoring Planck regime complications. Since at the 

semi-classical level the black hole spends most of its life below the Planck scale, this 

will be a lower bound on the estimate of the evaporation process duration. 

m.  Assuming black holes obey the blackbody law, compute the power W emitted by 

a black hole of mass M. Use that the Stefan-Boltzmann constant is 

 
2 4

B

3 260

k

c


  , (8) 

and express your result in terms of G, c, ħ and M. 

n.  Compute the evaporation time τ in terms of M, assuming the result from the previous 

part holds at all energy scales. Compare with the age of the universe for a black hole 

of mass 10M☼ = 2∙10
31

 kg. Use that G = 6.67∙10
–11

 m
3
/(s

2
kg), ħ = 1.05∙10

–34
 m

2
kg/s, 

c = 3∙10
8
 m/s. 

 

 

 


