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CLASSICAL PHYSICS 

 

 

 

A. ELECTRICITY 

 

Consider the electric circuit shown to the 

right. The DC battery and the two coils are 

ideal (they have zero electrical resistance). 

The fuse F has zero electrical resistance also, 

and melts instantaneously precisely when the 

current IF reaches the value 200 mA. At the 

initial moment t = 0 all currents are zero, and 

the switch goes from OFF to ON. 

 

a. Calculate and plot the currents as functions 

of time until the moment the fuse melts. 

Calculate this moment of time.  

b. Calculate the values and the rates of variation for all currents in the circuit, right 

after the fuse melts.  

c. Calculate the currents as t approaches infinity. 

 

Use the specific values: V = 10 V; L1 = 10 mH; L2 = 5 mH; IF = 0.2 A; R1 = 1 kΩ; 
R2 = 200 Ω. 
 

(Petrică Cristea, Ph.D. & Mihai Dincă, Ph.D., Faculty of Physics, University of Bucharest) 

 

 

 

B. MICHELSON’S “LADDER” 

 

Consider the system in the drawing acting as a 

diffraction grating. The system consists of a number 

of perfectly homogeneous and parallel glass plates, 

each having thickness h and refraction index n. 

Each plate is shorter than the previous by a. 

A homogeneous monochromatic light beam with 

wavelength λ enters the system perpendicularly onto 

the longest plate. The light undergoes diffraction 

when leaving the system through the last contact 

point of each two neighboring plates. 

 

a. Find the condition for the principal diffraction 

maxima in terms of a, h, n, λ and the diffraction 
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angle α (the deflection angle relative to the initial direction of the incident beam). 

b. How many principal diffraction maxima does one get if it is assumed that these can 

be neatly seen only if they lay within the range of the first principal diffraction 

maximum of a single slit with aperture a? 

c. What should the maximum spectral range ∆λ of the light beam be in order to avoid 

getting overlapping maxima of different orders? 

 

Use the specific values: h = a = 1cm; n = 1.5; λ = 500 nm. 

 

(Marian Băzăvan, Ph.D, Faculty of Physics, University of Bucharest) 
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SPECIAL RELATIVITY: ACCELERATING SPACESHIP 

 

 

At Earth time t = 0, a rocket leaves Earth, starting from rest, on a space journey along 

a straight line. Unless otherwise stated, the rocket is to be considered point-like for all 

purposes. Assume the simplifying hypothesis that the thrust (force) of the engines in 

the Earth's frame and the rest mass of the rocket are constant in time, and neglect any 

gravitational and/or atmospheric influences. Let c be the speed of light in vacuum, and 

a the initial acceleration of the rocket. 

 

a. Plot a qualitative graph of the rocket’s speed against time as measured on Earth. 

b. What is the “weight” of an astronaut with rest mass m on the spaceship? 

c. Express the rocket’s coordinate on the x-axis representing its trajectory as a 

function of Earth time t, in terms of t, c, and a. (The Earth is to be considered the 

origin of the axis.) 

d. Draw the world line of the rocket on a space-time diagram displaying only the 

coordinates of interest, x and ct. 

e. Determine the last moment of time t0 at which a light signal could be emitted from 

Earth so that it still reaches the spaceship. 

 

At Earth time c/2a, a radio station on Earth initiates a recurrent communication with 

the spaceship: the station emits a stream of monochromatic photons which, upon 

reception, are instantly reflected back towards Earth by the rocket. The photons reach 

the radio station, which immediately reflects them back in the direction of the 

spaceship, and the process repeats. When first emitted, the photons have the frequency 

ν0 in the Earth’s reference frame. 

 

f. Determine the rocket time T’ at which it receives for the first time a signal from 

Earth. (At launch, the spaceship’s clocks were perfectly synchronized with those on 

Earth.) 

g. Add to the diagram drawn in part d the world line of such a photon from the 

moment it is emitted to the moment it reaches the spaceship for the first time. 

h. Find the frequency of the last stream of photons received by the spaceship. 

i. Find the frequency of the last stream of photons received by the radio station. 
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NEWTONIAN COSMOLOGY 

 

 

In this problem we will aim to describe in a very schematic way the behavior of the 

universe and its ultimate fate, by using simple concepts of Newtonian mechanics. In 

order to do this, we will have to start by assuming the validity of the so-called 

Cosmological Principle, which asserts the homogeneous and isotropic character of the 

universe. We will also take for granted that the universe started with the Big Bang. 

 

The above considerations lead us to the conclusion that, seen from any point in space, 

the expansion of the universe must be described by a unique scale factor, R(t), that is 

independent of position. That is, given an arbitrary point that currently has position 

vector r0, at some other moment in time its position was/will be characterized by 

0( ) ( ) .r t R t r= ⋅
� �

 

(The technical term used by mathematicians for such a transformation of the space is 

homothety, but never mind that.) Obviously, at the present time t0, R(t0) = 1, and at the 

moment of the Big Bang, R(0) = 0. 

 

The main goal of this problem is to asses the different possible kinds of evolution for 

R(t). 

 

 

1. The Hubble Law states the relation that has to exist between the position vector r 

and the velocity v of any point of the space, so that the expansion of the universe is 

homogeneous and isotropic. The way the velocity depends on the position vector is 

expressed by means of a multiplying factor having appropriate units, called the 

Hubble constant, H. It is nevertheless a function of time, just as R(t) is, and we shall 

denote H(t0) = H0. 

a. Deduce Hubble’s Law. 

b. Show that, in the Newtonian mechanics approximation, Hubble’s Law holds for 

any observer considered to be “at rest” in no matter what point of the universe. 

c. The current value of the Hubble constant, H0, can be measured by experimentally 

determining the distance and recessional speed of a galaxy. Thus, we are in the 

position to make a first and crude estimate of the age of the universe, t0. In order to do 

this, let us assume (incorrectly!) that the current velocities of the points of the space 

remained unchanged from the moment of the Big Bang until now.  

Express t0 in terms of H0. (It is of interest to mention the fact that the observed value 

for H0 leads us to an estimate for t0 of roughly 1.38·10
10
 yr. For the remaining of this 

problem, we will call this number the Hubble time, tH.) 

 

2. We will now study a “pressureless dust” model of the universe. By “dust” we mean 

that the universe contains only ordinary matter, with no radiation (photons), no 

neutrinos, no non-baryonic matter or anything else. By “pressureless” we understand 

that every point of the space is endowed with the same time-dependent density ρ, and 
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that the total mass of the universe has a fixed value. Consequently, the density varies 

only as a result of the universal expansion. 

d. Find the relation between ρ(t) and R(t) in terms of the current universal density, 

ρ(t0) = ρ0. 

e. Consider an infinitely thin spherical layer of mass m and current radius r0. Write 

down its total energy at a given moment of time in terms of m, r0, R(t), H(t), ρ(t), and 

the gravitational constant G. 

f. Let us define the so-called critical density, ρc, as being the value for which the 

above mentioned energy is zero. The distinction between the different types of 

universes is made by means of a quantity called the density parameter, Ω(t), which 

represents the ratio of the actual density of the universe to the critical density at a 

given moment in time. 

Specify how the universe behaves if Ω > 1 (“closed” universe), if Ω = 1 (“flat” 

universe), and if Ω < 1 (“open” universe). 

g. Express the total energy E of the spherical layer in terms of m, r0, R(t), H(t), and 

Ω(t), and show that the character of the universe doesn’t change in time. 

h. Making use of the Hubble Law, find the implicit equation for the time dependence 

of R(t) in terms of H0 and Ω0 = Ω(t0). Show that at the moment of the Big Bang the 

universe was essentially behaving infinitely close to a flat universe. 

 

3. We are now in the position to make a rather more accurate estimation of the age of 

the universe, under the assumption of a flat universe (Ω0 = 1). 

i. Solve the equation found at point h in order to find explicitly R(t), and express t0 in 

terms of tH. 

j. Draw a rough sketch of the scale factor versus time in units of tH. 

 

4. We will now address the more complex cases of a closed (Ω0 > 1) universe and of 

an open (Ω0 < 1) universe. 

k. For Ω0 > 1, find the reversed dependency, of time as a function of the scale factor, 

in terms of H0 and Ω0. 

Hint: 

Cxxxdx
x

x
+−−=

−∫ )1()arcsin(
1

. 

l. In order to be able to study R(t), we will try to express this function in a parametric 

way. To do this, let us denote the arcsin function in the above solution by p/2. 

Write down R(p) and t(p). 

m. Express the age of the universe T at the final moment of the Big Crunch (the 

opposite of the Big Bang) in terms of tH and Ω0. 

n. Find the maximum size (i.e. maximum R) of the universe in terms of Ω0. 

o. For Ω0 = 2, draw a rough sketch of R versus t in units of tH. 

p. For Ω0 < 1, find the reversed dependency t(R), in terms of H0 and Ω0. 

Hint: 

Cxxxdx
x

x
+++−=

+∫ )1()(arcsinh
1

. 

q. Denote the above arcsinh function by p/2, and write down R(p) and t(p). 

r. Show that, in the long run, the expansion of the universe will stabilize itself 

infinitely close to a uniform rate, and find that rate in terms of H0 and Ω0. 

s. For Ω0 = 0.5, draw a rough sketch of R(t) in units of tH. 

 


